合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 4種油醇烷氧基化物平衡和動態(tài)表面張力、潤濕性、泡沫性、乳化性質(zhì)研究(三)
> 為什么鋼針會漂浮在水面上?
> 滑溜水壓裂液體系配方
> 天然和合成寶石的表面張力怎么測
> 預(yù)測納米孔中油氣界面張力的狀態(tài)方程模型構(gòu)建
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過程(一)
> 桐油基衍生物鈉鹽的表面張力、CMC值測定、乳液穩(wěn)定性、固化膜性能測試(二)
> 低表面張力、減縮型聚羧酸減水劑制備步驟
> 濃度、溫度、二價離子、礦化度等對無堿二元復(fù)合體系界面張力的影響
> 新水性丙烯酸乳液原膠(水性壓敏膠)配方、制備步驟及優(yōu)勢
推薦新聞Info
-
> 反離子鹽KBr濃度對酰胺基陽離子Gemini表面活性劑的表/界面活性的影響(二)
> 反離子鹽KBr濃度對酰胺基陽離子Gemini表面活性劑的表/界面活性的影響(一)
> 典型離子型與非離子型起泡劑的界面行為對泡沫性能的影響機制
> 新無氰白銅錫電鍍液及電鍍方法可降低表面張力,促進鍍液對復(fù)雜工件的潤濕
> 一種耐超高溫酸液體系、制備方法及其應(yīng)用
> 納米滲吸驅(qū)油劑種類、降低界面張力和改變潤濕性的能力等機理研究(四)
> 復(fù)合驅(qū)中聚合物與陰離子表面活性劑的協(xié)同作用研究
> 化學(xué)組成對無堿鋁硼硅OLED基板玻璃表面張力的影響——結(jié)果、結(jié)論
> 化學(xué)組成對無堿鋁硼硅OLED基板玻璃表面張力的影響——摘要、實驗方法
> 納米滲吸驅(qū)油劑種類、降低界面張力和改變潤濕性的能力等機理研究(三)
來自于液滴的表面張力的靈感,開發(fā)一種在可變的地形上移動的輪子
來源:中國人工智能學(xué)會 瀏覽 906 次 發(fā)布時間:2024-09-06
憑借其速度和低運輸成本,車輪是機器人運動的有利選擇。然而,車輪不能輕易地越過大障礙物,從而限制了它們在某些環(huán)境中的使用。近期Science Robotics發(fā)表的封面論文,Lee等人開發(fā)了一種剛度可調(diào)的輪子,可以實時改變,在平坦的地面上呈現(xiàn)出堅硬的圓形,在大障礙物上呈現(xiàn)出柔軟的、可變形的形狀。車輪外側(cè)的智能鏈條結(jié)構(gòu)通過輻條結(jié)構(gòu)連接到中心輪轂。輻條中的張力可以調(diào)整以適應(yīng)車輪的剛度,從而允許車輪在可變的地形上移動。車輪功能在四輪車輛和兩輪輪椅系統(tǒng)中得到了展示。
這是一個受液滴表面張力啟發(fā)的可變剛度輪。在液滴中,隨著最外層液體分子的內(nèi)聚力的增加,將液體分子向內(nèi)拉的凈力也增加。這導(dǎo)致高表面張力,導(dǎo)致液滴從引力引起的扭曲形狀恢復(fù)為圓形。同樣,車輪的形狀和剛度是通過改變最外層智能鏈塊的牽引力來控制的。隨著連接到每個鏈塊的鋼絲輻條張力的增加,車輪特性反映了一般圓剛輪的特性,這在正常平坦地面上的高速運動中具有優(yōu)勢。相反,隨著線輻條張力的減小,車輪的模量減小,并且根據(jù)障礙物的形狀,車輪容易變形。這使得輪子適合克服障礙物,而不需要復(fù)雜的控制或傳感系統(tǒng)。在此機理的基礎(chǔ)上,將輪子應(yīng)用于重達120 kg的兩輪輪椅系統(tǒng),實時實現(xiàn)了輪椅在室外環(huán)境中駕駛時,圓形高模量狀態(tài)和可變形低模量狀態(tài)的狀態(tài)轉(zhuǎn)換。
主要技術(shù)方法1.靈感來源:設(shè)計靈感來自于液滴的表面張力,液滴在外界作用力下能夠通過表面張力恢復(fù)其形狀,類似地,輪子通過改變其剛度來適應(yīng)不同的地形。
2.可變剛度機制:通過改變連接到輪子最外層智能鏈塊(smart chain block)的牽引力(即改變牽引線張力),來控制輪子的形狀和剛度。
3.智能鏈結(jié)構(gòu):輪子的智能鏈結(jié)構(gòu)由一系列鏈塊組成,通過改變牽引線的張力,可以改變這些鏈塊的緊密程度,從而改變輪子的剛度。
4.實時狀態(tài)轉(zhuǎn)換:輪子能夠?qū)崿F(xiàn)在高剛度狀態(tài)(適合平坦地面高速運動)和低剛度狀態(tài)(易于變形以適應(yīng)障礙物)之間的實時轉(zhuǎn)換。
5.實驗系統(tǒng):開發(fā)了一個實驗系統(tǒng)來評估輪子的基本特性,包括使用負載傳感器和激光位移傳感器來測量輪子的反應(yīng)力和位置。
實驗結(jié)果1.剛度變化驗證:實驗結(jié)果顯示,通過改變輪轂間隙距離(hub-gap distance),輪子的剛度可以顯著變化,從而影響其變形高度。
2.障礙物克服能力:輪子成功演示了在遇到障礙物時降低剛度以適應(yīng)其形狀,并在通過障礙后恢復(fù)高剛度狀態(tài)的能力。
3.車輛系統(tǒng)演示:將這種輪子應(yīng)用于四輪車和兩輪輪椅系統(tǒng),證明了其在實際載重和戶外環(huán)境中的實用性和有效性。
4.穩(wěn)定性和牽引力:在不同載荷下測試了輪子的穩(wěn)定性和牽引力,確保了其在不同條件下的性能。
5.高速行駛評估:在高速行駛條件下,評估了輪子的振動特性,確保了其在實際應(yīng)用中的可靠性。