合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 不同溫度和壓力對AOT穩(wěn)定CO2乳液的界面張力影響(一)
> 芬蘭Kibron表面張力儀精準(zhǔn)測量不同微米尺度下異辛烷的表面張力
> 拉脫法測量:不同性能磁性液體的磁表面張力變化規(guī)律與影響因素(二)
> 10種常用表面活性劑水溶液的表面張力測定、泡沫的產(chǎn)生和測試(二)
> 毛細(xì)現(xiàn)象及潤濕作用機(jī)理相關(guān)解釋
> 電極界面剩余電荷量越大,界面張力(界面自由能)就越小
> N-十四?;於彼峒捌溻c鹽合成路線、制備、表面張力等性能測定(二)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復(fù)效果研究(一)
> 3D打印鈦合金粉體的生產(chǎn)工藝——高速高壓氬氣氣流克服鈦合金熔體表面張力
> 人胰島素的朗繆爾單分子層膜的表面化學(xué)和光譜學(xué)性質(zhì)——結(jié)論、致謝!
推薦新聞Info
-
> 反離子鹽KBr濃度對酰胺基陽離子Gemini表面活性劑的表/界面活性的影響(二)
> 反離子鹽KBr濃度對酰胺基陽離子Gemini表面活性劑的表/界面活性的影響(一)
> 典型離子型與非離子型起泡劑的界面行為對泡沫性能的影響機(jī)制
> 新無氰白銅錫電鍍液及電鍍方法可降低表面張力,促進(jìn)鍍液對復(fù)雜工件的潤濕
> 一種耐超高溫酸液體系、制備方法及其應(yīng)用
> 納米滲吸驅(qū)油劑種類、降低界面張力和改變潤濕性的能力等機(jī)理研究(四)
> 復(fù)合驅(qū)中聚合物與陰離子表面活性劑的協(xié)同作用研究
> 化學(xué)組成對無堿鋁硼硅OLED基板玻璃表面張力的影響——結(jié)果、結(jié)論
> 化學(xué)組成對無堿鋁硼硅OLED基板玻璃表面張力的影響——摘要、實(shí)驗(yàn)方法
> 納米滲吸驅(qū)油劑種類、降低界面張力和改變潤濕性的能力等機(jī)理研究(三)
表面張力和重力驅(qū)動下液態(tài)釬料填充焊縫流動模型構(gòu)建及效果評估(二)
來源:科學(xué)技術(shù)與工程 瀏覽 437 次 發(fā)布時間:2025-07-17
1數(shù)值計算方法
液態(tài)釬料的流動過程十分穩(wěn)定,雷諾數(shù)很低,故采用不可壓層流方法對流場進(jìn)行求解。連續(xù)性方程為
VOF方法通過在動量方程中添加源項求解流動過程,該源項由表面張力和壁面黏附作用引起,表達(dá)式為
式中:u為速度矢量;t為時間;p為壓力;rho為密度;g為重力加速度;mu為動力黏度;F_{s}為作用在相界面上的界面力,即源項。
V O F方法捕捉流體界面的基本原理是利用流體體積分?jǐn)?shù)(alpha)表征兩相流體在計算區(qū)域內(nèi)的分布。alpha定義為每一相流體體積占據(jù)網(wǎng)格體積的百分?jǐn)?shù),取值為0~1,它的相傳輸方程表達(dá)式為
式(3)中:u_{c}為壓縮速度,大小取決于界面域中的最大速度。通過alpha計算出兩相流體界面處的密度與動力黏度,表達(dá)式為
式中:rho_{m}、rho_{w}、rho_0分別為釬料的密度、空氣的密度和兩相界面處的混合密度;u_{m}、u_{w}、u_0分別為釬料的動力黏度、空氣的動力黏度和兩相界面處的混合動力黏度。
應(yīng)用連續(xù)表面力CSF模型,考慮表面張力的影響,并將表面張力作為體積力加到動量方程源項中,表達(dá)式為
式(6)中:F_{s}為界面力;sigma為兩相界面張力;kappa為界面曲率;n為垂直于兩相界面的單位法向向量。
在VOF模型中,通過壁面黏附模型設(shè)定液體和壁面的接觸角,以此調(diào)整壁面附近兩相界面的單位法向量方法如式(7)所示。壁面的接觸角,以此調(diào)整壁面附近兩相界面的單位法向量n,計算方法如式(7)所示。
式(7)中:theta為接觸角;n_、t_分別為兩相界面與壁面接觸的單位法向量和單位切向量。
2物理模型及計算區(qū)域設(shè)置
2.1基本假設(shè)
高溫真空釬焊過程的模擬環(huán)境較為極端,還會涉及釬料的相變,對真空狀態(tài)下的釬焊流場求解十分困難。為計算釬料升溫融化、潤濕填充焊縫過程,根據(jù)實(shí)際釬焊過程做出如下假設(shè)。
(1)釬料的熔點(diǎn)為1470K。溫度低于1470K時,釬料保持固態(tài);溫度高于1470K時,釬料為液態(tài)。
(2)將液態(tài)釬料視為不可壓縮流體。
(3)所有固體結(jié)構(gòu)在加熱過程中不發(fā)生任何形變。
(4)忽視各構(gòu)件之間的輻射熱交換。
(5)以低真空度空氣域模擬真空環(huán)境。
2.2物理模型與計算設(shè)置
圖1(a)為基于實(shí)際釬焊情況的試樣結(jié)構(gòu)簡化模型,橙色部分為釬料涂覆區(qū)域,放置在焊縫上方,材料為鎳基高溫合金;黃色部分為待焊接區(qū)域,該焊縫兩側(cè)表面互相平行,間距為0.2mm;灰色部分為母材,加熱過程中不發(fā)生形變,不與釬料相互溶解。整流器試樣結(jié)構(gòu)對接焊縫尺寸如圖1(b)所示。
計算方案基于VOF模型,以真空度為0.04Pa的空氣模擬真空環(huán)境,試樣結(jié)構(gòu)完全被空氣包裹。計算時間步長為0.001s;由于缺少液態(tài)鎳基合金的接觸角資料,故參考文獻(xiàn)中與本計算工況(1500K左右)相近的銀釬料滴在基板上的接觸角,將靜態(tài)接觸角設(shè)置為10°。表面張力為2.0N/m,由JMatPro軟件擬合得到。釬料未融化時,計算域十分穩(wěn)定,任意位置處速度為0m/s,控制方程的收斂速度較快,為節(jié)省計算資源,將初始場的溫度設(shè)為1469.9K,恰好低于釬料的熔點(diǎn)。為防止氣體無法排出焊縫,導(dǎo)致局部壓力過高從而阻礙液態(tài)釬料鋪展,故在焊縫下端設(shè)置開口,確保釬料正常潤濕鋪展。真實(shí)釬焊過程中,升溫及保溫時間很長,在幾十分鐘以上,但釬料填充焊縫通常在幾秒內(nèi)就已完成,故將升溫時間壓縮,具體升溫工藝如圖2所示。
計算域網(wǎng)格截面(x=0mm)如圖3所示,整體上采用多面體網(wǎng)格,在釬料涂覆區(qū)域內(nèi)外均設(shè)置邊界層網(wǎng)格,為準(zhǔn)確捕捉多余釬料在母材表面的流失過程,對母材表面的網(wǎng)格進(jìn)行加密。